
Solutions to Question Sheet 5, Continuity II v1 2019-20

Intermediate Value Theorem continued

1. Assume that f : [0, 1]→ [0, 1] is continuous on [0, 1]. Prove that there
exists some c ∈ [0, 1] such that

f(c) = sin
(πc

2

)
.

Hint Apply the Intermediate Value Theorem to

h (x) = f(x)− sin
(πx

2

)
.

Solution Follow the hint and let

h (x) = f(x)− sin
(πx

2

)
.

We are told that f : [0, 1] → [0, 1] which means that 0 ≤ f(x) ≤ 1 for
all x ∈ [0, 1]. Thus

h (0) = f(0)− 0 ≥ 0 while h (1) = f(1)− 1 ≤ 1− 1 = 0.

That is h (0) ≥ 0 ≥ h (1). If h (0) = 0 choose c = 0, while if h (1) = 0
choose c = 1. Otherwise apply the Intermediate Value Theorem to h
with γ = 0 to find c ∈ (0, 1) for which h (c) = 0.

2. (Generalising Question 1.) Prove a version of the Fixed Point Theorem.
If f, g : [a, b] → [a, b] are continuous functions such that f(a) ≥ g (a)
and f(b) ≤ g (b) then there exists c ∈ [a, b] such that f(c) = g (c).

Hint: Follow the hint in the previous question and consider h (x) =
f(x)− g (x).

Solution Let h (x) = f(x) − g (x), a continuous function on [a, b] by
the sum rule for continuous functions.

The assumption f(a) ≥ g (a) implies h (a) = f(a) − g (a) ≥ 0. If
h (a) = 0 then f(a) = g (a) and we are finished. So assume h (a) > 0.

Also the assumption f(b) ≤ g (b) implies h (b) = f(b)−g (b) ≤ 0. Again
if h (b) = 0 then f(b) = g (b) and we are finished. So assume h (b) < 0.

Thus, we are left assuming h (a) > 0 > h (b) when we can apply the
Intermediate Value Theorem to h on [a, b] with γ = 0 to find c ∈ (a, b)
for which h (c) = 0, i.e. f(c) = g (c) .
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Boundedness Theorem

3. Recall the Boundedness Theorem which states that a continuous
function on a closed bounded interval is bounded and attains its bounds.
In this question we check if the conditions that the function be contin-
uous on a closed, bounded interval are necessary. So, if remove any of
these conditions does the conclusion of the Theorem still hold?

Give examples of

i) A function on a closed bounded interval that is not bounded.

ii) A continuous function on (−1, 1) with range (−∞,∞), (and thus
is not bounded).

iii) A function on [0, 1] that is bounded but does not attain its bounds.

Solution i) For an example of a function on a closed interval that is
not bounded,

f(x) =


1

x
if 0 < x ≤ 1

0 if x = 0.

Note that this function is not continuous on [0, 1] . So we can deduce
that the conclusion of the Boundedness Theorem does not necessar-
ily follow if we do not demand f to be continuous. (Make sure you
understand all the negations in this last sentence.)

ii) For an example of a continuous function on (−1, 1) with range
(−∞,∞) we can base our answer on functions unbounded near x = 1
and −1, e.g. 1/(1− x) and 1/(1 + x) for this makes it possible for the
range to be (−∞,∞).

Yet for −1 < x < 1 both 1/(1− x) and 1/(1 + x) are positive. So,
to get negative values, multiply one of these functions by −1 and then
add, i.e.

x 7−→ 1

1− x
− 1

1 + x
=

2x

1− x2
.

To see that this has image (−∞,∞) you have to be able to solve

2x

1− x2
= y
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for any y ∈ (−∞,∞). But rearranging, solving the quadratic and
taking the correct root(!) gives the solution

x =

√
1 + y2 − 1

y
.

Figure for Question 3ii:
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Note that the interval (−1, 1) on which the function is defined is not
closed. So we can deduce that the conclusion of the Boundedness The-
orem does not necessarily follow if we do not demand that the interval
on which the function is defined is closed.

iii) For an example of a function on [0, 1] that does not attain its bounds,

h (x) =

{
x if x ∈ (0, 1)

1/2 if x = 1 or x = 0.
.

Note that this function is not continuous on [0, 1] so again the conclu-
sion of the Boundedness Theorem does not necessarily follow if we do
not demand f to be continuous.

To sum up

f continuous on a closed and bounded interval =⇒ f is bounded,

f continuous on a closed interval 6=⇒ f is bounded,

f continuous on a bounded interval 6=⇒ f is bounded,

f defined on a closed and bounded interval 6=⇒ f is bounded,
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4. i) a) Show that the function f : R→ R given by

f(x) =
1

x2 + 1

is bounded for all x ∈ R.

b) Does f attain its bounds?

c) Is this a counter-example to the Boundedness Theorem, in
particular that functions continuous on a closed bounded in-
terval attain their bounds?

ii) a) Show that the function f : R→ R given by

f(x) =
x

x2 + 1

is bounded for all x ∈ R.

b) Does f attain its bounds?

iii) Sketch the graphs of both functions.

Hint: Expand and rearrange the inequalities

(x− 1)2 ≥ 0 and (x+ 1)2 ≥ 0.

Solution i) a) The function is bounded above because

x2 ≥ 0 =⇒ x2 + 1 ≥ 1 =⇒ 1

x2 + 1
≤ 1.

The function is bounded below because

x2 + 1 is positive =⇒ 1

x2 + 1
is positive, i.e.

1

x2 + 1
≥ 0.

b) This upper bound is attained at x = 0. The lower bound is not
attained though

lim
x→∞

1

x2 + 1
= 0,

so the function gets arbitrarily close to 0 but it is never attained.
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Figure for Question 4i,
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c) The function is not a counter-example to the Boundedness Theorem
which says that if f is continuous on a closed & bounded interval then
it attains it’s bounds. In this case the interval on which f is defined is
not a bounded interval, it is all of R.

ii) a) I suggest start by sketching the graph:

-1
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0

0.5
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It would appear from the graph that

−1

2
≤ x

x2 + 1
≤ 1

2
(1)

for all x but can we prove this?

We prove each inequality separately. For the upper bound

x

x2 + 1
≤ 1

2
⇐⇒ x2 − 2x+ 1 ≥ 0 ⇐⇒ (x− 1)2 ≥ 0,

which is true. Thus the inequality holds.
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The the lower bound in (??) ,

−1

2
≤ x

x2 + 1
⇐⇒ x2 + 2x+ 1 ≥ 0 ⇐⇒ (x+ 1)2 ≥ 0,

which is true. Thus the inequality holds.

Hence x/(x2 + 1) is bounded above by 1/2 and below by −1/2.

b) The upper bound is attained at x = 1, the lower at x = −1
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Strictly Monotonic functions

5. Prove that

i) for all n ∈ N, with n even, then xn is strictly increasing on [0,∞),

ii) for all n ∈ N, with n even, then xn is not strictly increasing on R,

iii) for all n ∈ N, with n odd, then xn is strictly increasing on R.

Hint: use the factorization

xn − yn = (x− y)
(
xn−1 + yxn−2 + y2xn−3 + ...+ yn−2x+ yn−1

)
.

In (iii) it might help to look at 3 cases, x > y ≥ 0, x > 0 > y and
0 ≥ x > y.

Solution i) Take any x > y ≥ 0. Then

xn − yn = (x− y)
(
xn−1 + yxn−2 + y2xn−3 + · · ·+ yn−1

)
. (2)

Both terms of the right are positive (which also means non-zero), the
first since x > y, and the second since all terms are ≥ 0 while xn >
0 implies that it is non-zero. Hence xn > yn. Thus xn is strictly
increasing on [0,∞).

ii) If n is even then choose, as an example x = 1 and y = −2 so x > y.
But (−2)n = 2n > 1n so xn 6> yn. Hence xn is not increasing on R.
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iii) Given x > y there are three possibilities.

• The case x > y ≥ 0 was dealt with in part (i).

• Assume x > 0 > y. The positive power of a positive number is
positive, so x > 0 =⇒ xn > 0. The odd power of a negative
number is negative, so 0 > y =⇒ 0 > yn. Thus x > 0 > y =⇒
xn > 0 > yn, i.e. xn > yn.

• If 0 > x > y then

0 > x > y =⇒ (−y) > (−x) > 0

=⇒ (−y)n > (−x)n > 0 by part (i)

=⇒ −yn > −xn > 0 since n is odd,

=⇒ xn > yn.

Hence in all three cases x > y =⇒ xn > yn.

Note That the results of this question were used in the lecture notes
as examples of function to which the Inverse Function Theorem applies
with the conclusion that x1/n is a strictly increasing continuous function
for x > 0 for all n and x ∈ R for odd n.

6. Prove that the hyperbolic functions sinhx and tanhx are strictly in-
creasing on R while coshx is strictly increasing on [0,∞).

Hint. Prove that
sinh (x+ y) > sinhx

for all x ∈ R and y > 0, similarly for tanh, while

cosh (x+ y) > coshx

for all x, y > 0.

Solution From the definition of sinh,

sinh (x+ y) > sinhx ⇐⇒ ex+y − e−x−y > ex − e−x.

Multiply through by ex+y > 0 to get a sequence of equivalences

ex+y − e−x−y > ex − e−x ⇐⇒ e2x+2y − 1 > e2x+y − ey

⇐⇒ e2x+2y − e2x+y + ey − 1 > 0

⇐⇒ e2x+y (ey − 1) + ey − 1 > 0

⇐⇒
(
e2x+y + 1

)
(ey − 1) > 0.
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Yet this is a true statement since y strictly greater than 0 implies that
ey is strictly greater than 1. i.e. ey − 1 > 0, while e2x+y + 1 > 1 > 0.
Hence sinh is strictly increasing on R.

From the definition of tanh we have a series of equivalences,

tanh (x+ y) > tanhx ⇐⇒ ex+y − e−x−y

ex+y + e−x−y
>
ex − e−x

ex + e−x

⇐⇒
(
ex + e−x

) (
ex+y − e−x−y

)
>
(
ex+y + e−x−y

) (
ex − e−x

)
⇐⇒ ey − e−y > e−y − ey

⇐⇒ e2y > 1.

This is true since y strictly greater than 0 implies e2y is strictly greater
than 1. Hence tanh is strictly increasing on R.

From the definition of cosh we have the equivalence,

cosh (x+ y) > coshx ⇐⇒ ex+y + e−x−y > ex + e−x.

Multiply through by ex+y > 0 and rearrange to get the sequence of
equivalences

ex+y + e−x−y > ex + e−x ⇐⇒ e2x+2y + 1 > e2x+y + ey

⇐⇒ e2x+2y − ey > e2x+y − 1

⇐⇒ ey
(
e2x+y − 1

)
> e2x+y − 1

⇐⇒ (ey − 1)
(
e2x+y − 1

)
> 0.

This is true since y > 0 and 2x+y > 0 imply ey−1 > 0 and e2x+y−1 > 0
and so their product is strictly greater than 0. Hence cosh is strictly
increasing on [0,∞).
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Inverse Function Theorem

7. State the Inverse Function Theorem.

Explain how to define the following inverse functions,

i) sinh−1 : R→ R,

ii) cosh−1 : [1,∞)→ [0,∞).

iii) tanh−1 : (−1, 1)→ R.

Don’t forget to show that the inverses map between the sets shown.

A problem might be that the Inverse Function Theorem as stated in
lectures refers to bounded interval while here we have R, [1,∞) and
[0,∞). An approach might be to take a large N and consider sinh and
tanh on [−N,N ] and cosh on [0, N ], define their inverses and finish by
letting N →∞.

Solution Inverse Function Theorem Assume that f is continuous
and strictly monotonic on the closed and bounded interval [a, b]. Write

[c, d] =

{
[f(a) , f(b)] if f is increasing

[f(b) , f(a)] if f is decreasing .

Then there exists a function g, continuous and strictly monotonic on
[c, d] which is inverse to f , i.e. g (f(x)) = x for all x ∈ [a, b] and
f(g (y)) = y for all y ∈ [c, d].

From Question 4 the functions sinh and tanh are strictly monotonic, in
fact increasing, on R while cosh is strictly monotonic, in fact increasing,
on [0,∞). But neither R nor [0,∞) are a closed and bounded interval
[a, b] as seen in the Inverse Function Theorem stated here. So, as
suggested in the question, let N ≥ 1 be given.

The Inverse Function Theorem can be applied to sinh and tanh on
[−N,N ] and cosh on [0, N ] to find the inverses

sinh−1 : [sinh (−N) , sinhN ]→ [−N,N ] ,

tanh−1 : [tanh (−N) , tanhN ]→ [−N,N ] ,

cosh−1 : [cosh 0, coshN ]→ [0, N ] .
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Let N → +∞ noting that

sinhN → +∞, sinh (−N) = − sinhN → −∞;

tanhN → 1, tanh (−N) = − tanhN → −1;

cosh 0 = 1 and coshN → +∞.

Thus we get inverses

sinh−1 : (−∞,∞)→ (−∞,∞) ,

tanh−1 : (−1, 1)→ (−∞,∞) ,

cosh−1 : [1,∞)→ [0,∞).

Perhaps from this diagram you can see that the inverse functions map
between the sets claimed above.

−1 1

x

y

tanh−1 x

sinh−1 x

cosh−1 x

Continuing, in the question I suggested that you check directly the
domains and codomains of these inverses.

i) For x ∈ R

sinhx =
ex − e−x

2
.

Let y ∈ R be given. Then sinhx = y is equivalent to

ex − e−x

2
= y ⇐⇒ (ex)2 − 2yex − 1 = 0.

This quadratic has a solution

ex = y +
√
y2 + 1,
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the positive root having been taken to ensure that x is real. We can thus
find x in terms of y and hence sinh maps R onto R, i.e. sinh : R→ R
and sinh−1 maps back from R to R.

ii) For coshx we have

coshx =
ex + e−x

2
.

It can be checked that for t ∈ R we have t + t−1 ≥ 2, with equality
when t = 1. Thus, with ex replacing t, we have

coshx =
ex + e−x

2
≥ 1

for all x ∈ R. But can cosh take every value ≥ 1?

Answer Yes, Let y > 1 be given. As for sinh the equation coshx = y
has solutions ex = y ±

√
y2 − 1.

But of these two solutions which should be taken? In the previous
question we only showed that coshx is strictly increasing for x ≥ 0.
Thus, to be able to apply the Inverse Function Theorem, we must
restrict ourselves to x ≥ 0. Yet x ≥ 0 implies ex ≥ 1. If we chose the
negative sign: ex = y −

√
y2 − 1, then

ex =
(
y −

√
y2 − 1

) y +
√
y2 − 1

y +
√
y2 − 1

=
1

y +
√
y2 − 1

< 1,

since y > 1. Thus we would then have both ex ≥ 1 and ex < 1, a
contradiction.

Therefore we must take the positive sign: ex = y +
√
y2 − 1 in which

case x = ln
(
y +

√
y2 − 1

)
is the solution of coshx = y. Thus cosh

maps [0,∞) onto [1,∞) and hence cosh−1 : [1,∞)→ [0,∞).

iii) Let y ∈ R be given. Then tanhx = y is equivalent to

ex − e−x

ex + e−x
= y.
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This rearranges to

e2x =
1 + y

1− y
. (3)

We can take the logarithm of both sides, and thus find x, as long as
(1 + y)/(1− y) is positive. In turn this means that we must have either
both 1 + y and 1− y positive or both negative.

The second possibility, 1 + y < 0 and 1− y < 0 combine as 1 < y < −1
for which there are no y. The first possibility, 1 + y > 0 and 1− y > 0
combine as −1 < y < 1. Hence, for such y we can solve for x. Thus
tanh maps R onto (−1, 1) and hence tanh−1 : (−1, 1)→ R.

Logarithm

8. Prove that the natural logarithm, defined as the inverse of the expo-
nential function, satisfies

ln a+ ln b = ln ab

for all a, b > 0.

(As throughout this course you may assume that exey = ex+y for all
x, y ∈ R.)

Hint What are eln a+ln b and eln ab? You may need to use the fact that
ex is an injective function.

Solution From the definition of ln a as the inverse of ex we have ab =
eln(ab), a = eln a and b = eln b. Thus

eln(ab) = ab = eln aeln b = eln a+ln b,

by the assumption running throughout the course that exey = ex+y for
all x, y ∈ R. Yet ex is a strictly increasing function and thus one-to-
one. Recalling that one-to-one means that if f(x) = f(y) then x = y we
deduce here that the two powers of e are the same, i.e. ln ab = ln a+ln b.
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Additional Questions for practice

9. Show that
2 cos2 x+ 3 cosx+ 1 = 2x2 + 3x+ 1

has a solution in [0, π/2] .

Solution Let

f(x) =
(
2 cos2 x+ 3 cosx+ 1

)
−
(
2x2 + 3x+ 1

)
= 2

(
cos2 x− x2

)
+ 3 (cosx− x) .

It suffices to find a solution to f(x) = 0. Looking at the values of the
function at the end points of the interval,

f(0) = 5 > 0 and f
(π

2

)
= −π

2

2
− 3

π

2
< 0.

So, by the Intermediate Value Theorem, there exists c ∈ (0, π/2) for
which f(c) = 0.

Figure for Question 9,
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10. Show that
x

sinx
+

1

cosx
= π

has a solution with x ∈ (0, π/2) .

14



Solution Again follow the principle of ridding ourselves of fractions by
multiplying up and solving

x cosx+ sinx = π sinx cosx.

Let
f(x) = x cosx+ sinx− π sinx cosx.

Then f(0) = 0. But for x = 0 the term sinx is zero so we cannot divide
through by sin x to get a solution of the original problem.

Instead, let us look at an x near 0 for which sin x and cosx are known,
for example π/4. We know that sin π/4 = cos π/4 = 1/

√
2. Thus

f
(π

4

)
=
π

4

1√
2

+
1√
2
− π

2
=

4− π
(
2
√

2− 1
)

4
√

2
< 0.

Combined with f(π/2) = π/2 > 0 we have f(π/4) < 0 < f(π/2).
Then by the Intermediate Value Theorem with γ = 0, there exists
c ∈ (π/4, π/2) for which f(c) = 0 For such c the terms sin c and cos c
are non-zero and we can divide by them to see that c satisfies

c

sin c
+

1

cos c
= π.

Figure for Question 10,
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