Solutions to Question Sheet 5, Continuity II vl 2019-20

Intermediate Value Theorem continued

1. Assume that f :[0,1] — [0, 1] is continuous on [0, 1]. Prove that there
exists some ¢ € [0, 1] such that
e

f(c) =sin (7> :
Hint Apply the Intermediate Value Theorem to

h(z) = f(z) — sin (%) .

Solution Follow the hint and let
. /T
h(x) = f(x) —sin <7> :

We are told that f :[0,1] — [0, 1] which means that 0 < f(z) <1 for
all z € [0,1]. Thus

h(0)=f(0)—0>0 while h(1)=f(1)—-1<1-1=0.

That is h(0) > 0 > h(1). If A (0) = 0 choose ¢ = 0, while if h (1) =0
choose ¢ = 1. Otherwise apply the Intermediate Value Theorem to h
with v = 0 to find ¢ € (0,1) for which A (¢) = 0.

2. (Generalising Question 1.) Prove a version of the Fized Point Theorem.
If f,g:[a,b] — [a,b] are continuous functions such that f(a) > g (a)
and f(b) < g (b) then there exists ¢ € [a, b] such that f(c) = g (c).

Hint: Follow the hint in the previous question and consider h (x) =

f(@) — g (x).

Solution Let h(z) = f(x) — g (x), a continuous function on [a, b] by
the sum rule for continuous functions.

The assumption f(a) > g (a) implies h(a) = f(a) — g(a) > 0. If
h(a) =0 then f(a) = g (a) and we are finished. So assume h (a) > 0.
Also the assumption f(b) < g (b) implies h (b) = f(b)—g (b) < 0. Again
if h(b) = 0 then f(b) = ¢ (b) and we are finished. So assume h (b) < 0.
Thus, we are left assuming h(a) > 0 > h(b) when we can apply the

Intermediate Value Theorem to h on [a, b] with v =0 to find ¢ € (a,b)
for which h (¢) =0, i.e. f(c)=g(c).
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Boundedness Theorem

3. Recall the Boundedness Theorem which states that a continuous
function on a closed bounded interval is bounded and attains its bounds.
In this question we check if the conditions that the function be contin-
uous on a closed, bounded interval are necessary. So, if remove any of
these conditions does the conclusion of the Theorem still hold?

Give examples of

i) A function on a closed bounded interval that is not bounded.

ii) A continuous function on (—1,1) with range (—o0, o), (and thus
is not bounded).

iii) A function on [0, 1] that is bounded but does not attain its bounds.

Solution i) For an example of a function on a closed interval that is
not bounded,

1 fo<x<1
flz)=49 7
0 ifz=0.

Note that this function is not continuous on [0, 1]. So we can deduce
that the conclusion of the Boundedness Theorem does not necessar-
ily follow if we do not demand f to be continuous. (Make sure you
understand all the negations in this last sentence.)

ii) For an example of a continuous function on (—1,1) with range
(—00,00) we can base our answer on functions unbounded near x = 1
and —1, e.g. 1/(1 —x) and 1/(1 4 x) for this makes it possible for the
range to be (—oo, 00).

Yet for —1 < & < 1 both 1/(1 —z) and 1/(1 + z) are positive. So,
to get negative values, multiply one of these functions by —1 and then

add, i.e.
1 1 2x

1—x_1+x:1—x2'

T —

To see that this has image (—o0, 00) you have to be able to solve
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for any y € (—o00,00). But rearranging, solving the quadratic and
taking the correct root(!) gives the solution

Vi+yr—1

Y

Figure for Question 3ii:

Note that the interval (—1,1) on which the function is defined is not
closed. So we can deduce that the conclusion of the Boundedness The-
orem does not necessarily follow if we do not demand that the interval
on which the function is defined is closed.

iii) For an example of a function on [0, 1] that does not attain its bounds,

r ifze(0,1)
h(z) =
1/2 ifz=1orx=0.

Note that this function is not continuous on [0, 1] so again the conclu-
sion of the Boundedness Theorem does not necessarily follow if we do
not demand f to be continuous.

To sum up

f continuous on a closed and bounded interval = f is bounded,
f continuous on a closed interval =% f is bounded,
f continuous on a bounded interval =% f is bounded,

f defined on a closed and bounded interval =& f is bounded,




i) a) Show that the function f : R — R given by

is bounded for all z € R.

b) Does f attain its bounds?

c) Is this a counter-example to the Boundedness Theorem, in
particular that functions continuous on a closed bounded in-
terval attain their bounds?

ii) a) Show that the function f: R — R given by

x
2 +1

fx) =

is bounded for all = € R.
b) Does f attain its bounds?
iii) Sketch the graphs of both functions.

Hint: Expand and rearrange the inequalities

(z—1)%>0 and (z+1)*>>0.
Solution i) a) The function is bounded above because

1
< 1.
241

2>0 = 22+1>1 =

The function is bounded below because

z? 4+ 1 is positive =— 1 is positive, i.e.

2 +

b) This upper bound is attained at x = 0. The lower bound is not
attained though

. 1
lim =
T—00 xQ +1

Y

so the function gets arbitrarily close to 0 but it is never attained.



Figure for Question 4i,

) 2 0 2 4

¢) The function is not a counter-example to the Boundedness Theorem
which says that if f is continuous on a closed & bounded interval then
it attains it’s bounds. In this case the interval on which f is defined is
not a bounded interval, it is all of R.

ii) a) I suggest start by sketching the graph:

I

<0.5}

It would appear from the graph that

1 T
<
2 T x2+1

<

N | —
—~
—_
SN—

for all x but can we prove this?

We prove each inequality separately. For the upper bound

1
ngj—lgﬁ = 2?2 +1>0 < (2—1)>>0,

which is true. Thus the inequality holds.
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The the lower bound in (?77?),

2~ 12 +1

1
<P s 24120 = (z+1)7>0,

which is true. Thus the inequality holds.
Hence x/(x® + 1) is bounded above by 1/2 and below by —1/2.

b) The upper bound is attained at = = 1, the lower at z = —1



Strictly Monotonic functions

5. Prove that
i) for all n € N, with n even, then z" is strictly increasing on [0, 00),
ii) for all n € N, with n even, then z" is not strictly increasing on R,
iii) for all n € N, with n odd, then 2™ is strictly increasing on R.
Hint: use the factorization

" — yn — (.CE o y) (xn—l + yxn—2 + y2$n—3 o+ yn—2$ + yn—l) )

In (iii) it might help to look at 3 cases, x >y > 0, z > 0 > y and
0>x>uy.

Solution i) Take any x > y > 0. Then

"=yt =(z—y) (" Hy" "y (2)

Both terms of the right are positive (which also means non-zero), the
first since > y, and the second since all terms are > 0 while 2" >
0 implies that it is non-zero. Hence z" > y". Thus " is strictly
increasing on [0, co).

ii) If n is even then choose, as an example x = 1 and y = —2 so = > v.
But (—2)" = 2" > 1™ so 2" # y". Hence z" is not increasing on R.



iii) Given x > y there are three possibilities.

e The case x > y > 0 was dealt with in part (i).

e Assume z > 0 > y. The positive power of a positive number is
positive, so x > 0 = 2" > 0. The odd power of a negative
number is negative, so 0 > y = 0 > y". Thusz > 0 > y —=
x> 0>y" e " > y".

o If 0>z >y then

O>z>y = (—y)>(—z)>0

= (—y)" > (—x)" >0 by part (i)

— —y">—2" >0 sincen is odd,

= " >qy"

Hence in all three cases z > y = 2" > y".

Note That the results of this question were used in the lecture notes
as examples of function to which the Inverse Function Theorem applies
with the conclusion that /" is a strictly increasing continuous function
for x > 0 for all n and x € R for odd n.

. Prove that the hyperbolic functions sinh x and tanh x are strictly in-
creasing on R while cosh z is strictly increasing on [0, 00).

Hint. Prove that
sinh (x +y) > sinhz

for all x € R and y > 0, similarly for tanh, while
cosh (z +y) > coshz

for all z,y > 0.
Solution From the definition of sinh,
sinh (z 4+ y) > sinhz < "V —e ¥ >¢e" —e ",

Multiply through by e*™¥ > 0 to get a sequence of equivalences
6$+y — e TTY S T T e2r+2y —1> e2x+y — Y
2T _ o2 L oV 1 > ()

et (e¥ —1)+e¥ —1>0

rrey

(e* ¥ +1) (e — 1) > 0.



Yet this is a true statement since y strictly greater than 0 implies that
eY is strictly greater than 1. i.e. e —1 > 0, while e***¥ +1 > 1 > 0.
Hence sinh is strictly increasing on R.

From the definition of tanh we have a series of equivalences,

et —em Y et — e
tanh (z 4+ y) > tanhz <=

e:):er + e Ty > et 4 e %
= (e ™) (e —eY) > (Ve ) (e" —e7)
— eV—eV>e ¥ —¢Y

— % > 1.

This is true since y strictly greater than 0 implies e? is strictly greater
than 1. Hence tanh is strictly increasing on R.

From the definition of cosh we have the equivalence,
cosh (z +9) > coshax < "V eV >e’ +e ",

Multiply through by e**¥ > 0 and rearrange to get the sequence of
equivalences

Y e S et et = 2P L1 > 2 eV
= W _ ¥ s 2ty ]
<

ey (€2x+y _ 1) > €2x+y -1
= (¢! —1) (¥ —1)>0.
This is true since y > 0 and 2z+y > 0 imply eY—1 > 0 and e**7¥—1 > 0

and so their product is strictly greater than 0. Hence cosh is strictly
increasing on [0, 0o).



Inverse Function Theorem

7. State the Inverse Function Theorem.
Explain how to define the following inverse functions,
i) sinh™': R = R,
i) cosh™ :[1,00) — [0,00).

iii) tanh™':(=1,1) — R.

Don’t forget to show that the inverses map between the sets shown.

A problem might be that the Inverse Function Theorem as stated in
lectures refers to bounded interval while here we have R, [1,00) and
[0,00). An approach might be to take a large N and consider sinh and
tanh on [—N, N] and cosh on [0, N], define their inverses and finish by
letting N — oo.

Solution Inverse Function Theorem Assume that f is continuous
and strictly monotonic on the closed and bounded interval [a,b]. Write

) [f(a), f(b)] if fis increasing
c,d| =
[f(b), f(a)] if fis decreasing.
Then there exists a function g, continuous and strictly monotonic on

[c,d] which is inverse to f, i.e. g(f(x)) = x for all x € |a,b] and
flg(y) =y for all y € [c,d].

From Question 4 the functions sinh and tanh are strictly monotonic, in
fact increasing, on R while cosh is strictly monotonic, in fact increasing,
on [0,00). But neither R nor [0, 00) are a closed and bounded interval
[a,b] as seen in the Inverse Function Theorem stated here. So, as
suggested in the question, let N > 1 be given.

The Inverse Function Theorem can be applied to sinh and tanh on
[—N, N] and cosh on [0, N] to find the inverses

sinh™' : [sinh (—N),sinh N] — [-N, N],
tanh™' : [tanh (—N),tanh N] — [N, N],
cosh™ : [cosh0,cosh N] — [0, N].
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Let N — 400 noting that
sinh N — +o0, sinh (—N) = —sinh N — —o0;
tanh N — 1, tanh (—N) = —tanh N — —1;
cosh0 =1 and cosh N — 4-00.
Thus we get inverses
sinh™ : (—o0,00) = (—00,00),
tanh ™' : (=1,1) = (—o00,00),
cosh™ : [1,00) = [0, 00).

Perhaps from this diagram you can see that the inverse functions map
between the sets claimed above.

Y

Continuing, in the question I suggested that you check directly the
domains and codomains of these inverses.

i) For x € R

. et —e
sinh z =
2

—x

Let y € R be given. Then sinhx = y is equivalent to

—X

i =y = (")’ —2ye® —1=0.

2

This quadratic has a solution
ef =y+Vyr+1,
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the positive root having been taken to ensure that x is real. We can thus
find x in terms of y and hence sinh maps R onto R, i.e. sinh : R — R
and sinh™ maps back from R to R.

ii) For cosh z we have

et +e”
2

coshx =

It can be checked that for t € R we have ¢t + ¢! > 2, with equality
when ¢ = 1. Thus, with e” replacing ¢, we have

coshz = —— >1
2

for all z € R. But can cosh take every value > 17

Answer Yes, Let y > 1 be given. As for sinh the equation coshz =y
has solutions e* =y + y/y2 — 1.

But of these two solutions which should be taken? In the previous
question we only showed that coshz is strictly increasing for x > 0.
Thus, to be able to apply the Inverse Function Theorem, we must
restrict ourselves to x > 0. Yet x > 0 implies e > 1. If we chose the

negative sign: e* =y — \/y? — 1, then

+y?2 -1 1
® —\/2—1)9 - <1,
’ <y ! y+vyi—1  y+yr -1

since y > 1. Thus we would then have both e* > 1 and e¢* < 1, a
contradiction.

Therefore we must take the positive sign: e* = y 4+ /y? — 1 in which
case r = In <y + VY2 — 1> is the solution of coshz = y. Thus cosh

maps [0, 00) onto [1,00) and hence cosh™ : [1,00) — [0, 00).

iii) Let y € R be given. Then tanhz = y is equivalent to

et —e

et + e~ % v
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This rearranges to
e = ——. (3)

We can take the logarithm of both sides, and thus find z, as long as
(14 y)/(1 —y) is positive. In turn this means that we must have either
both 1 + y and 1 — y positive or both negative.

The second possibility, 1 +y < 0and 1 —y < 0 combineas 1 <y < —1
for which there are no y. The first possibility, 1 +y >0and 1 —y > 0
combine as —1 < y < 1. Hence, for such y we can solve for x. Thus
tanh maps R onto (—1,1) and hence tanh™': (=1,1) — R.

Logarithm

8. Prove that the natural logarithm, defined as the inverse of the expo-
nential function, satisfies

Ina+Inb=1Inab
for all a,b > 0.

(As throughout this course you may assume that e®e¥ = e**¥ for all
z,y € R

Hint What are e™ "% and e™? You may need to use the fact that
e’ is an injective function.

Solution From the definition of Ina as the inverse of e* we have ab =
e@d) g = e and b = b, Thus

6ln(ab) ab = elnaelnb — eln a+Inb

I

by the assumption running throughout the course that e®e? = e**¥ for
all z,y € R. Yet €” is a strictly increasing function and thus one-to-
one. Recalling that one-to-one means that if f(z) = f(y) then x = y we
deduce here that the two powers of e are the same, i.e. Inab = Ina+Inb.
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Additional Questions for practice

9. Show that

2cos’w +3cosz + 1 =21 + 37+ 1
has a solution in [0, 7/2].
Solution Let
f(z) = (2cos®z+3cosz+1) — (227 + 3z +1)
= 2(cos’z —2*) 4+ 3 (cosz — x).

It suffices to find a solution to f(z) = 0. Looking at the values of the
function at the end points of the interval,

7T2

F(0)=5>0 and f(%):—7—3g<0.

So, by the Intermediate Value Theorem, there exists ¢ € (0,7/2) for
which f(c) =0.

Figure for Question 9,

Y

2(cos )2 43 cosz+1

f(z)

10. Show that

— + =T
ST COS ™

has a solution with = € (0,7/2).
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Solution Again follow the principle of ridding ourselves of fractions by
multiplying up and solving

T COSX -+ Sinx = 7 SIn X CoS T.

Let
f(z) = xcosz +sinx — wsinx cos x.

Then f(0) = 0. But for z = 0 the term sin z is zero so we cannot divide
through by sinz to get a solution of the original problem.

Instead, let us look at an x near 0 for which sin x and cos x are known,
for example 7/4. We know that sin7/4 = cos7/4 = 1/+/2. Thus

<0

™ 71 1 77_4—%(2\/5—1)
G -15t 5" un

Combined with f(7/2) = ©/2 > 0 we have f(n/4) < 0 < f(n/2).
Then by the Intermediate Value Theorem with v = 0, there exists
c € (r/4,m/2) for which f(c¢) =0 For such ¢ the terms sinc¢ and cosc
are non-zero and we can divide by them to see that ¢ satisfies

c 1

sinc cosc

= T.

Figure for Question 10,

Y - 1
- L1 _x
sin @ + cos x
sin @4 cos @ — sin x cos @

t
w/2
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